Exceptional high fatigue strength in Cu-15at.%Al alloy with moderate grain size
نویسندگان
چکیده
It is commonly proposed that the fatigue strength can be enhanced by increasing the tensile strength, but this conclusion needs to be reconsidered according to our study. Here a recrystallized α-Cu-15at.%Al alloy with moderate grain size of 0.62 μm was fabricated by cold rolling and annealing, and this alloy achieved exceptional high fatigue strength of 280 MPa at 10(7) cycles. This value is much higher than the fatigue strength of 200 MPa for the nano-crystalline counterpart (0.04 μm in grain size) despite its higher tensile strength. The remarkable improvement of fatigue strength should be mainly attributed to the microstructure optimization, which helps achieve the reduction of initial damage and the dispersion of accumulated damage. A new strategy of "damage reduction" was then proposed for fatigue strength improvement, to supplement the former strengthening principle. The methods and strategies summarized in this work offer a general pathway for further improvement of fatigue strength, in order to ensure the long-term safety of structural materials.
منابع مشابه
Assessment of mixed mode loading on macroscopic fatigue crack paths in thick section Al-Cu-Li alloy plate
High strength, wrought 7xxx (Al-Zn-Mg) and Al-Li based alloys show a propensity for fatigue macroscopic crack deflections aligned along grain boundaries. The present work reports a study on a 3 rd generation Al-Li based alloy in the form of a thick AA2297 (Al-Cu-Li alloy) plate, where it was found that although the lithium containing material may indeed be more susceptible to mixed mode grain b...
متن کاملEnhancing the low cycle fatigue strength of AA6061 aluminum alloy by using the optimized combination of ECAP and precipitation hardening
In the present study, mechanical properties and low cycle fatigue behavior of a solid-solutionized AA6061 aluminum alloy produced by equal channel angular pressing (ECAP) process were investigated. The grain refinement after two passes of ECAP significantly increased the yield stress and ultimate tensile stress and decreased the ductility of the alloy. However, the improvement of low cycle fati...
متن کاملCorrosion Behavior of Al-2wt%Cu Alloy Processed By Accumulative Roll Bonding (ARB) Process
Accumulative roll bonding (ARB) imposes severe plastic strain on materials without changing the specimen dimensions. ARB process is mostly appropriate for practical applications because it can be performed readily by the conventional rolling process. An Al-2wt%Cu alloy was subjected to ARB process up to a strain of 4.8. Stacking of materials and conventional roll-bonding are repeated in the pro...
متن کاملMicroalloying Ultrafine Grained Al Alloys with Enhanced Ductility
Bulk ultrafine grained (UFG)/nanocrystal metals possess exceptional strength but normally poor ductility and thermal stability, which hinder their practical applications especially in high-temperature environments. Through microalloying strategy that enables the control of grains and precipitations in nanostructured regime, here we design and successfully produce a highly microstructure-stable ...
متن کاملFatigue Behavior of an Ultrafine-Grained Al-Mg-Si Alloy Processed by High-Pressure Torsion
The paper presents the evaluation of the mechanical and fatigue properties of an ultrafine-grained (UFG) Al 6061 alloy processed by high-pressure torsion (HPT) at room temperature (RT). A comparison is made between the UFG state and the coarse-grained (CG) one subjected to the conventional aging treatment Т6. It is shown that HPT processing leads to the formation of the UFG microstructure with ...
متن کامل